DMU430B
ADVANCED ultrasonic sensors with analog output


- Function largely independent of surface properties, ideal for detection of liquids, bulk materials, transparent media, ...
- Small design at long operating range
- Temperature-compensated range and measurement range
- 1 PNP switching output (NPN) and 1 analog output 0 ... 10V / $4 \ldots 20 \mathrm{~mA}$
- NEW - Both outputs can easily be taught using a button
- NEW - Stable all-metal design
- NEW - Process data and configuration via IO-Link interface
- NEW - Five operating modes: scanning, synchronous, multiplex, activation and throughbeam operation



## Accessories:

(available separately)

- Mounting systems
- Cables with M12 connector (K-D ...)
- USB IO-Link master 2.0 (Part no. 50121098)


## Dimensioned drawing



A Control button 2
B Control button 1
C Indicator diodes
D Active sensor surface

## Electrical connection

DMU430B-...X3/LTV-M12
DMU430B-...X3/LTC-M12


Factory setting for pin 2 multi funct: teach input


A Active sensor surface
B Indicator diodes

DMU430B-.../4TC-M12
DMU430B-.../4TV-M12


## Technical data

Ultrasonic specifications
Operating range ${ }^{1)}$
Adjustment range
Ultrasonic frequency
Typ. opening angle
Resolution of switching output
Resolution of analog output
Direction of beam
Accuracy (analog output)
Reproducibility
Switching hysteresis (OUT1)
Temperature drift

## Sensor operating modes

Time behavior
Switching frequency
Response time
Readiness delay

## Electrical data

Operating voltage $U_{B}{ }^{3}$ )
Residual ripple
Open-circuit current
Switching output
Function (PNP)
Output current
Switching range adjustment
Changeover NO/NC
Analog output
Error signal (analog output)

## Indicators

Yellow LED
Yellow LED, flashing
Green LED
Green LED flashing
Yellow and green LEDs flash

## Mechanical data

## Housing

Weight
Ultrasonic transducer
Connection type
Installation position

## Environmental data

Ambient temp. (operation/storage)
Protective circuit ${ }^{5}$ )
VDE protection class
Degree of protection
Standards applied
Certifications

DMU430B-3000.X3/...
$300 \ldots 3000 \mathrm{~mm}$ 2)
$300 \ldots 3000 \mathrm{~mm}$
120 kHz
$15^{\circ}$
1 mm
0.1 mm

Axial
$\pm 0.5 \%$ of end value ${ }^{1)}$
$\pm 0.15 \%$ of end value ${ }^{1)}$
25 mm
$\pm 1.5 \%$ of end value ${ }^{1)}$
COM2 (38.4kBaud)
Is supported

4 Hz
$1,6 \mathrm{~Hz}$
125 ms
380 ms
< 300 ms

SIO mode: $15 \ldots 30 \mathrm{~V}$ DC (incl. $\pm 10 \%$ residual ripple),
COM2 mode: $18 \ldots 30 \mathrm{~V}$ DC (incl. $\pm 10 \%$ residual ripple)
$\pm 10 \%$ of $U_{B}$
$\leq 50 \mathrm{~mA}$
OUT1:1 x PNP transistor output,
O-Link SIO mode
NO contact, reversible
SIO mode: max. 150 mA per contact,
COM2 mode: max. 100 mA per contact
OUT1: control button 1 or teach input
OUT1: control button 1 or teach input
curre ouput $0 \ldots$... 10 V , teachable, configurable, Distance too small: approx. 3.8 mA ,
Distance too large: approx. $11 \mathrm{~V} /$ approx. 21 mA
OUT1: object detected
Teach-in / teaching error for 1-point Teach /
cable short circuit
Object within the operating range
IO-Link communication
Teach-in/teaching error for window-teach
All metal - brass, nickel-plated
110 g
240 g
iezoceramic ${ }^{4)}$
M 12 connector, 5 -pin
Any
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C} / \quad-25^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} /$
$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} \quad-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
1, 2, 3
III
IP 67 and IP 68
EN 60947-5-2
UL 508, C22.2 No. 14-13 3) 6) 7)

1) At $20^{\circ} \mathrm{C}$
2) Target: $100 \mathrm{~mm} \times 100 \mathrm{~mm}$ plate
3) For UL applications: use is permitted exclusively in Class 2 circuits according to NEC
4) The ceramic material of the ultrasonic transducer contains lead zirconium titanate (PZT)
5) 1=short-circuit and overload protection, 2=polarity reversal protection, $3=$ wire break and inductive protection
6) These proximity switches shall be used with UL Listed Cable assemblies rated $30 \mathrm{~V}, 0.5 \mathrm{~A}$ min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7); Use tool for buttons
7) Ambient temperature $85^{\circ} \mathrm{C}$. Use same voltage supply for all circuits.

## Diagrams

DMU430B-3000...-M12



## DMU430B-6000...-M12






## Notes

## Observe intended use!

$\stackrel{\leftrightarrow}{\leftrightarrows}$ This product is not a safety sensor and is not intended as personnel protection.
$\stackrel{4}{4}$ The product may only be put into operation by competent persons
$\stackrel{\wedge}{ }{ }^{\wedge}$ Only use the product in accordance with its intended use.

DMU430B
ADVANCED ultrasonic sensors with analog output
Part number code

Operating principle

| HTU | Ultrasonic sensor, scanning principle, with background suppres- |
| :--- | :--- |
| sion |  |

Series
430B 430B Series, cylindrical M30 construction

Operating range in mm
$3000 \quad 300 \ldots 3000$
$6000 \quad 600 \ldots 6000$

Equipment (optional)
X "Advanced" design
3 Teach button on the sensor

Pin assignment of connector pin 4 / black cable wire (OUT1)
4 PNP output, NO contact preset
P PNP output, NC contact preset
L IO-Link communication or push-pull (SIO)

Pin assignment of connector pin 2 / white cable wire (Teach-IN)
T Teach input

Pin assignment of connector pin 5 / gray cable wire (OUT2)
$4 \quad$ PNP output, NO contact preset
P PNP output, NC contact preset
V Analog voltage output $0 \ldots 10 \mathrm{~V}$
C Analog current output $4 \ldots 20 \mathrm{~mA}$
$\mathrm{X} \quad$ Connection not assigned (n. c.- not connected)

Connection technology
M12 M12 connector, 5-pin

## Order guide

The sensors listed here are preferred types; current information at www.leuze.com.

|  | Designation | Part no. |
| :--- | :--- | :--- |
| Operating range / Analog output |  |  |
| $300 \ldots 3000 \mathrm{~mm} / 0 \ldots 10 \mathrm{~V}$ | DMU430B-3000.X3/LTV-M12 | 50124266 |
| $300 \ldots 3000 \mathrm{~mm} / 4 \ldots 20 \mathrm{~mA}$ | DMU430B-3000.X3/LTC-M12 | 50124265 |
| $600 \ldots 6000 \mathrm{~mm} / 0 \ldots 10 \mathrm{~V}$ | DMU430B-6000/4TV-M12 | 50142211 |
| $600 \ldots 6000 \mathrm{~mm} / 0 \ldots 20 \mathrm{~mA}$ | DMU430B-6000/4TC-M12 | 50142210 |

## Device functions and indicators - switching output

The sensor has two buttons for adjusting switching output OUT1 and analog output OUT2. Alternatively, all adjustments can also be made via IO-Link. The multi funct teach input can be used to perform the 1-point teach and the changeover of the switching function (NO contact/NC contact).

## Switching output OUT1



## Note!

The switching behavior is not defined in the dead zone.

Switching behavior with 2-point window-teach as a function of the switching function

| Switching function <br> configured as | First taught object <br> distance | Second taught object <br> distance | Output switching behavior |  |
| :---: | :---: | :---: | :---: | :---: |
| make-contact (NO) <br> break-contact (NC) | Far | Close |  |  |
|  | Close | Far |  |  |

Note!
In measurement operation, the yellow and green LED only indicate the behavior of output OUT1.
The behavior of output OUT2 is not indicated.

## Adjustment of the switching points (Teach) using the control buttons

This device setting is only available for sensors in the DMU430B-...X3/... variant.
The switching point of the sensor is set to 3000 mm (static 1-point teach) on delivery.
By means of a simple operating procedure, the switching point for the output OUT1 can be individually taught to an arbitrary distance within the operating range with 1-point teach (static) or 2-point window-teach (static).
Moreover, the output function can be switched from NO contact (NO - normally open) to NC contact (NC - normally closed). For the adjustment, control button 1 is permanently assigned to output OUT1 (see dimensioned drawing).

| 1-point teach (static) | 2-point window-teach (static) 1) |
| :---: | :---: |
| 1. Place object at desired switching distance. | 1. First, place object at desired switching distance for switching point 1. |
| 2. To adjust output OUT1, press button 1 for $2 \ldots 7$ s until the yellow LED flashes at 3 Hz . | 2. To adjust output OUT1, press button 1 for $7 \ldots 12$ s until the yellow and green LED flash alternately at 3 Hz . |
| 3. Release the teach button to complete the teach event. The current object distance has been taught as the new switching point. | 3. Release the button. The sensor remains in teach mode and the LEDs continue to flash. |
| 4. Error-free teach: LED states and switching behavior according to the diagram shown above. <br> Faulty teach (object may be too close or too far away - please note operating range): <br> yellow LED flashes at 5 Hz until an error-free teach event is performed. <br> The affected output is inactive as long as there is a teach error. | 4. Then, place the object at the desired switching distance for switching point 2. <br> Note: The minimum distance between the switching points for an operating range of 3000 mm is: 250 mm |
|  | 5. Briefly press the teach button again to complete the teach event. <br> The switching window was taught in. |
|  | 6. Error-free teach: LED states and switching behavior according to the diagram shown above. <br> Faulty teach (object may be too close or too far away - please note operating range): <br> green and yellow LEDs flash at 8 Hz until an error-free teach event is performed. |

1) See table "Switching behavior with 2-point window-teach as a function of the switching function"

## Adjusting the switching function (NO/NC) using the control buttons

This device setting is only available for sensors in the DMU430B-...X3/... variant.
Control button 1 can be used to switch the switching function of output OUT1 from NO contact to NC contact (or vice versa). To do this, proceed as follows:

| Action / Description | Control button | Indicator diode <br> GREEN |
| :--- | :---: | :---: |
| YELLOW |  |  |$|$



Note!
For 2-point window-teach, the switching behavior is dependent on the selected object distances for switching points 1 and 2. See previous page!

## Device functions - analog output

Analog output OUT2

| Rising characteristic curve | Falling characteristic curve |
| :---: | :---: | :---: | :---: | :---: |

Characteristic curve behavior as a function of the object distances for start/end of measurement range

| Characteristic curve <br> configured as | First taught object <br> distance | Second taught object <br> distance | Characteristic curve of analog <br> output |
| :--- | :---: | :---: | :---: |
| Rising characteristic curve | Close |  |  |
| Falling characteristic curve | Far |  |  |



Note!
In measurement operation, the yellow and green LED only indicate the behavior of output OUT1.
The behavior of output OUT2 is not indicated.

## Adjustment of the analog output (Teach) using the control buttons

This device setting is only available for sensors in the DMU430B-...X3/... variant.
The choice of distances for start of measurement range and end of measurement range can be used to adjust the characteristic curve of the analog output.
If an object is located outside of the taught measurement range, an error signal is output. A different analog signal is output here by the sensor for the errors "distance too close: object outside of the measurement range" and "distance too far: object outside of the measurement range".

| Rising characteristic curve 1) | Falling characteristic curve 1) |
| :---: | :---: |
| 1. Place object at desired distance for the start point of the measurement range. | 1.Place object at desired distance for the end point of the measurement range. |
| 2. To adjust analog output OUT2, press button 2 for $7 \ldots$ 12s until the yellow and green LED flash alternately at 3 Hz . | 2. To adjust analog output OUT2, press button 2 for $7 \ldots$ 12s until the yellow and green LED flash alternately at 3 Hz . |
| 3. Release the button. The sensor remains in teach mode and the LEDs continue to flash. | 3. Release the button. The sensor remains in teach mode and the LEDs continue to flash. |
| 4. Then, place object at desired distance for the end point of the measurement range. <br> Note: the minimum distance between the start and end point of the measurement range for an operating range of 3000 mm is: 250 mm | 4. Then, place object at desired distance for the start point of the measurement range. <br> Note: the minimum distance between the start and end point of the measurement range for an operating range of 3000 mm is: 250 mm |
| 5. Briefly press the teach button again to complete the teach event. <br> The characteristic curve with rising curve has been taught. | 5. Briefly press the teach button again to complete the teach event. <br> The characteristic curve with falling curve has been taught. |
| 6. Error-free teach: LED states acc. to table under "Device functions and indicators". <br> Faulty teach: green and yellow LEDs flash at 8 Hz until an error-free teach is performed. | 6. Error-free teach: LED states acc. to table under "Device functions and indicators". <br> Faulty teach: green and yellow LEDs flash at 8 Hz until an error-free teach is performed. |

1) See table "Characteristic curve behavior as a function of the object distances for start/end of measurement range"

## Adjusting the sensor via the teach input

This device setting is only available for sensors in the DMU430B-...X3/... variant.
Multi funct connection pin 2 is configured ex works as a teach input. Via the teach input, you can

- lock the control buttons.
- perform a 1-point teach (static) of the switching output.
- perform a 2-point window-teach (static) of the switching output.
- perform a 2-point teach of the characteristic curve of the analog output.


Signal level LOW $\leq 0.191 \cdot \mathrm{U}_{\mathrm{B}}$ or not connected
Signal level HIGH $\geq 0.809 \cdot U_{B}$

Locking of the control buttons

| Action | Pin 2 <br> (multi funct) | Description |
| :---: | :---: | :--- |
| Locking the control buttons | HIGH signal (permanent) | As long as the HIGH signal is continuously <br> applied, the sensor cannot be adjusted with the <br> control buttons. <br> The control buttons of the sensor are disabled. |
| Unlocking the control buttons | LOW signal or not connected (permanent) | As long as the LOW signal is continuously applied <br> or pin 2 remains unconected, the sensor can be <br> adjusted with the control buttons. |

Teach of switching output and analog output
Switching point 1
Switching point 2

After the delay be-
fore start-up
( $\leq 300 \mathrm{~ms}$ ) has
elapsed, the control
$\geq 20 \mathrm{~ms}$
Pulse duration $\mathrm{t}_{\text {Teach }}$
Pulse duration $\mathrm{t}_{\text {Teach2 }}$
$20 \ldots \infty \mathrm{~ms}$
buttons of the sensor
can be operated.

| Switching output OUT1:$\mathrm{t}_{\text {Teach } 1}=20 \ldots 80 \mathrm{~ms}$ | 1-point teach (static) |
| :---: | :---: |
|  | Place object. <br> The current object distance is taken over as switching point 1 with the rising edge of $\mathrm{t}_{\text {Teach2 }}$. |
|  | Do not change the object distance! The falling edge of $\mathrm{t}_{\text {Teach2 }}$ ends the teach event. |
| Switching output OUT1: <br> $\mathrm{t}_{\text {Teach1 }}=120 \ldots 180 \mathrm{~ms}$ | 2-point window-teach (static) |
|  | Place object. <br> The current object distance is taken over as switching point 1 with the rising edge of $\mathrm{t}_{\text {Teach2 }}$. |
|  | Sensor remains in teach mode. Change the object distance now! The current object distance is taken over as switching point 2 and the teach event is ended with the falling edge of $\mathrm{t}_{\text {Teach2. }}$. |
| Analog output OUT2: <br> $\mathrm{t}_{\text {Teach1 }}=120 \ldots 180 \mathrm{~ms}$ | 2-point teach of analog characteristic (static) |
|  | Place object. <br> The current object distance is taken over as the start point of the measurement range with the rising edge of ${ }^{\mathrm{t}}$ Teach2. |
|  |  |
|  | Sensor remains in teach mode. <br> Change the object distance now! The current object distance is taken over as the end point of the measure- |

Note!
The procedure is identical for the 2-point window-teach for switching output OUT1 and for the 2-point teach of the characteristic curve of analog output OUT2 via the teach input. The characteristic curve and switching window can only be adjusted independently via the control buttons or the IO-Link interface.
The changeover of the switching function (NC contact/NO contact) and the characteristic curve (rising/falling) is not possible via the teach input.

## DMU430B

## Adjustment of switching point via teach input

This device setting is only available for sensors in the DMU430B-.../4... variant.
The switching point of the sensor is set to 6000 mm on delivery.
By means of a simple teach event, the switching point can be taught to an arbitrary distance within the operating range. The Leuze PA1/XTSX-M12 Teach Adapter can be used for this purpose. The adapter can also be used to easily switch the output function from NO contact to NC contact.

## 1-point teach

1. Place object at desired switching distance.
2. For the adjustment of OUT1, connect input Teach-IN to GND for $2 \ldots 7 \mathrm{~s}$ (Leuze teach adapter: position "TEACH-GND"). The current state of output OUT1 is frozen during the teach event.
3. The yellow LED flashes at 3 Hz and is then ON .

The current object distance has been taught as the new switching point.
4. Error-free teach: LED states and switching behavior according to the diagram shown above.

Faulty teach (object may be too close or too far away - please note operating range):
yellow LED flashes at 5 Hz until an error-free teach event is performed.
The output OUT1 is inactive as long as there is a teach error.

## Adjusting the switching function ( $\mathrm{NC} / \mathrm{NO}$ ) via teach input ${ }^{1}$

This device setting is only available for sensors in the DMU430B-.../4... variant.
The switching function of the sensor is set to normally open (NO) on delivery.
If the switching function is changed, the switching output is changed to the opposite state (toggled).

## Changeover of the switching function

1. To change the switching function, connect input Teach-IN to $U_{B}$ for $2 \ldots 7 \mathrm{~s}$ (Leuze teach adapter: position "Teach- $\mathrm{U}_{\mathrm{B}}$ ").

The current state of output OUT1 is frozen while the adjustment is made.
2. The green and yellow LED flash alternately at 2 Hz .

The switching function has been reversed.
The switching behavior corresponds to the diagram shown above.

## Adjustment of analog output via teach input

This device setting is only available for sensors in the DMU430B-.../4... variant.
The choice of distances for start of measurement range and end of measurement range can be used to adjust the characteristic curve of the analog output.
If an object is located outside of the taught measurement range, an error signal is output. A different analog signal is output here by the sensor for the errors "distance too close: object outside of the measurement range" and "distance too far: object outside of the measurement range".

|  |  |
| :---: | :---: |
|  | 1. Place object at desired distance for the end point of the measurement range. |
| 2. To adjust OUT2, connect the Teach-IN input to GND for 7 ... 12s (Leuze Teach Adapter: position "Teach-GND") until the yellow and green LEDs flash alternately at 3 Hz . | 2. To adjust OUT2, connect the Teach-IN input to GND for 7 ... 12s (Leuze Teach Adapter: position "Teach-GND") until the yellow and green LEDs flash alternately at 3 Hz . |
|  | 3. The sensor remains in teach mode and the LEDs continue to flash. |
| 4. Then, place object at desired distance for the end point of the measurement range. <br> Note: the minimum distance between the start and end point of the measurement range <br> for an operating range of 6000 mm is: 500 mm | 4. Then, place object at desired distance for the start point of the measurement range. <br> Note: the minimum distance between the start and end point of the measurement range for an operating range of 6000 mm is: 500 mm |
| 5. To complete the teach event, briefly connect the Teach-IN to GND again (Leuze Teach Adapter: position "Teach- $\mathrm{U}_{\mathrm{B}}$ "). The characteristic curve with rising curve has been taught. | 5. To complete the teach event, briefly connect the Teach-IN to GND again (Leuze Teach Adapter: position "Teach- $\mathrm{U}_{\mathrm{B}}$ "). The characteristic curve with falling curve has been taught. |
| 6. Error-free teach: LED states acc. to table under "Device functions and indicators". <br> Faulty teach: green and yellow LEDs flash at 8 Hz until an error-free teach is performed. | 6. Error-free teach: LED states acc. to table under "Device functions and indicators". <br> Faulty teach: green and yellow LEDs flash at 8 Hz until an error-free teach is performed. |

[^0]
## IO-Link interface

This device setting is only available for sensors in the DMU430B-...X3/... variant.
The ultrasonic sensor features an IO-Link interface acc. to specification V1.1. and satisfies the Smart Sensor Profile.
As a result, the sensor can easily, quickly and, thus, economically be configured and diagnostic information read out. With a small amount of effort, the sensor can also be integrated in a control.

## Overview of the configuration options via IO-Link

| Function block | Function | Description |
| :---: | :---: | :---: |
| Operating mode | Standard operation | The sensor operates as a diffuse sensor with background suppression. |
|  | Multiplex operation | A max. of 10 sensors - 1 master and 9 slaves - can be wired together in a network. To do this, the sensors must be electrically connected with one line. The master generates a timing signal and all networked sensors are activated with time-delay. |
|  | Synchronous operation | A max. of 10 sensors - 1 master and 9 slaves - can be wired together in a network. To do this, the sensors must be electrically connected with one line. The master generates a timing signal and all networked sensors are activated simultaneously. |
|  | Activation operation | The sensor can be activated through an external signal. |
|  | Operation as throughbeam sensor | The sensor can either be configured as a scanner or as a throughbeam sensor. Operation as a throughbeam sensor requires 2 sensors, which are electrically connected through one line. |
| Switching outputs OUT1 / OUT2 | Switching point 1/2 | The switching points can be directly entered as distance value in mm . |
|  | Switching output (OUT1 and OUT2) | Adjustment as PNP or NPN switching output. |
|  | Switching function | Adjustment as NC / NO contact. ${ }^{1)}$ |
|  | Switching behavior in the case of error | The switching behavior of output OUT1 of the sensor, for objects which are located outside of the operating range, can be adjusted. |
|  | 2-point behavior | If a switching output is to operate with 2 switching points, a choice can be made between 2-point window-teach (factory setting) or 2-point teach (e.g. for simple pump controls with minimum and maximum fill levels). |
|  | Delay times | The time module can be used to configure a switch-on or switch-off delay at the output. This delay time is dependent on the update interval of the respective device and is calculated using the following formula: <br> Delay [ms] = Update interval [ms] * Switch-on/-off delay |
|  | Teach switching output OUT1 | The switching output OUT1 can be taught via the IO-Link interface. |
|  | Teach offset | An additional or shorter distance at the switching point can be entered directly as a distance value in mm . This parameter applies only for 1-point teach. |
|  | Teach lock | Adjustment for locking of control buttons. |
| Analog output OUT2 | Analog start value | The distance for the start point of the measurement range can be entered directly in mm . |
|  | Analog end value | The distance for the end point of the measurement range can be entered directly in mm . |
|  | Direction of the characteristic curve | Configuration option for rising or falling characteristic curve. |
|  | Output range | For devices with voltage output: <br> $0 \ldots 10 \mathrm{~V}$ (factory setting); $0 \ldots 5 \mathrm{~V} ; 1 \ldots 6 \mathrm{~V}$. <br> For devices with current output: <br> $4 \ldots 20 \mathrm{~mA}$ (factory setting); $0 \ldots 20 \mathrm{~mA}$. |
| Temperature | Temperature compensation | Adjustment option for internal (sensor works with the integrated temperature sensor) or external (with a constant application temperature, this can be manually entered. The sensor then compensates the measured values at a fixed rate with this temperature). |
|  | Unit | Adjustment option to ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$. |
|  | Temperature value | Entry temperature value in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ (if external temperature compensation is desired). |

1) NO contact: normal switching behavior (not inverted switching);

NC contact: inverted switching behavior (inverted switching).
In addition to the configuration functions, a range of sensor information, such as sensor status, sensor diagnostics as well as the process data, can be called up.
Further information and the device-specific description of the IO-Link interface (IODD) can be found on the Internet at www.leuze.com in the Downloads area of the respective sensor.


[^0]:    1) See table "Characteristic curve behavior as a function of the object distances for start/end of measurement range"
